Two dimensional Dirac carbon allotropes from graphene.
نویسندگان
چکیده
Using a structural search method in combination with first-principles calculations, we found lots of low energy 2D carbon allotropes and examined all possible Dirac points around their Fermi levels. Three amazing 2D Dirac carbon allotropes have been discovered, named as S-graphene, D-graphene and E-graphene. By analyzing the topology correlations among S-, T, net W graphene and graphene, we found that a general rule is valuable for constructing 2D carbon allotropes that are keen to possess Dirac cones in their electronic structures. Based on this rule, we have successfully designed many new 2D carbon allotropes possessing Dirac cones. Their energy order can be well described by an Ising-like model, and some allotropes are energetically more stable than those recently reported. The related electronic structures of these Dirac allotropes are anisotropy distinguished from those of graphene. Moreover, the fact that D- and E-graphene present Dirac cones suggests that sp hybridization or sp(3) hybridization could not suppress the emerging of Dirac features. Our results demonstrate that the Dirac cone and carrier linear dispersion is a very common feature in 2D carbon allotropes and can exist beyond the limitations of fundamental structure features of graphene.
منابع مشابه
Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones.
Using systematic evolutionary structure searching we propose a new carbon allotrope, phagraphene [fæ'græfi:n], standing for penta-hexa-hepta-graphene, because the structure is composed of 5-6-7 carbon rings. This two-dimensional (2D) carbon structure is lower in energy than most of the predicted 2D carbon allotropes due to its sp(2)-binding features and density of atomic packing comparable to g...
متن کاملSemimetallic carbon allotrope with a topological nodal line in mixed sp2-sp3 bonding networks
Graphene is known as a two-dimensional Dirac semimetal, in which electron states are described by the Dirac equation of relativistic quantum mechanics. Three-dimensional analogs of graphene are characterized by Dirac points or lines in momentum space, which are protected by symmetry. Here, we report a novel 3D carbon allotrope belonging to a class of topological nodal line semimetals, discovere...
متن کاملTwo-dimensional carbon topological insulators superior to graphene
Graphene was the first material predicted to realize a topological insulator (TI), but unfortunately the gap is unobservably small due to carbon's weak spin-orbital coupling (SOC). Based on first-principles calculations, we propose a stable sp-sp(2) hybrid carbon network as a graphene analog whose electronic band structures in proximity of the Fermi level are characterized by Dirac cones. We de...
متن کاملTwo - dimensional Q 1 Q 2 carbon leading to new photoconversion Q 3 processes
Two-dimensional (2D) carbon allotropes, which are atomic thick layers made of network carbon atoms with hexagonal structured lattices, have been neglected until the direct investigation of mechanically exfoliated graphene by Novoselov et al. in 2004. Graphene is a 2D carbon allotrope with a unique structure of hexagonally arranged atoms that give it unparalleled electrical conductivity and carr...
متن کاملLattice Stability and Generation of Massive Dirac Fermions in α-Graphynes and Topological Line Defects in Monolayer BN
Carbon allotropes named α-graphynes (αGy), with sp2 and sp3 bonded carbon atoms (Fig. 1), have been shown to display graphene-like electronic structures with the characteristic Dirac cones. Here, we discuss the lattice stability and gap opening in hydrogenated and oxydized forms of α-graphynes, and show that in both cases, the planar form is unstable against soft-phonon modes with off-plane dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2014